小學數學是通過教材,教小朋友們關于數的認識,四則運算,圖形和長度的計算公式,單位轉換一系列的知識,為初中和日常生活的計算打下良好的數學基礎。荷蘭教育家弗賴登諾爾認為:“數學來源于現實,也必須扎根于現實,并且應用于現實。” [1] 的確,現代數學要求我們用數學的眼光來觀察世界,用數學的語言來闡述世界。從小學生數學學習心理來看,學生的學習過程不是被動的吸收過程,而是一個以已有知識和經驗為基礎的重新建構的過程,因此,做中學,玩中學,將抽象的數學關系轉化為學生生活中熟悉的事例,將使兒童學得更主動。從我們的教育目標來看,我們在傳授知識的同時,更應注重培養學生的觀察、分析和應用等綜合能力一站式中小學數學教具批發。安慶數學教學教具供應商
代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和復數,以及以它們為系數的多項式的代數運算理論和方法的數學分支學科。 初等代數是更古老的算術的推廣和發展。代數是研究數、數量、關系與結構的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什么,以及了解變量的概念和如何建立多項式并找出它們的根。代數的研究對象不*是數字,而是各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關系的**就是一個代數結構。安慶數學教學教具供應商幾何圖形認知教具--釘板。
1整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。
2自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。
3計數單位一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4數位計數單位按照一定的順序排列起來,它們所占的位置叫做數位。
5數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a。如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。因為35能被7整除,所以35是7的倍數,7是35的約數。
7、什么叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3比的前項和后項同時乘以或除以一個相同的數(0除外),比值不變。
函數(function)的定義通常分為傳統定義和近代定義,函數的兩個定義本質是相同的,只是敘述概念的出發點不同,傳統定義是從運動變化的觀點出發,而近代定義是從**、映射的觀點出發。函數的近代定義是給定一個數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關系可以用y=f(x)表示,函數概念含有三個要素:定義域A、值域B和對應法則f。其中**是對應法則f,它是函數關系的本質特征。平方立方問題教學演示模型。
圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長)周長=邊長×4 C=4a面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )表面積=棱長×棱長×6 S表=a×a×6體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )周長=(長+寬)×2 C=2(a+b)面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 c:高)(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+bc+ca)(2)體積=長×寬×高 V=abc
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah基礎教育數學教學儀器教具。云浮數學教學教具供應商
小學數學演示教具批發。安慶數學教學教具供應商
定義定理公式
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把后兩個數相加,再同第三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把后兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
安慶數學教學教具供應商